Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109185, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38420586

RESUMO

Moderate activation of IFN-I contributes to the body's immune response, but its abnormal expression, stimulated by oxidative stress or other factors causes pathological damage. Heme oxygenase-1 (HO-1), induced by stress stimuli in the body, exerts a central role in cellular protection. Here we showed that HO-1 could promote IFN-1 under Spring Viremia of Carp virus (SVCV) infection and concomitantly attenuate the replication of SVCV. Further characterization of truncated mutants of HO-1 confirmed that intact HO-1 was essential for its antiviral function via IFN-I. Importantly, HO-1 inhibited the IFN-I signal by degrading the IRF3/7 through the autophagy pathway when it was triggered by H2O2 treatment. The iron ion-binding site (His28) was critical for HO-1 to degrade IRF3/7. HO-1 degradation of IRF3/7 is conserved in fish and mammals. Collectively, HO-1 regulates IFN-I positively under viral infection and negatively under oxidative stress, elucidating a mechanism by which HO-1 regulates IFN-I signaling in bi-directions.

2.
Bioresour Technol ; 388: 129722, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37704088

RESUMO

Lignin is usually deemed as an inhibitor to enzymatic hydrolysis of cellulose due to its physical barrier, non-productive adsorption, and steric hindrance. Herein, a novel supramolecular deep eutectic solvent (SUPRADES), comprising ethylene glycol and citric acid in 5:1 M ratio, and ß-cyclodextrin (ß-CD) in a concentration of 3.5% (w/w), was developed to be efficient for pretreating wheat straw. The delignification rate, cellulose enzymatic digestibility, and hemicellulose removal reached 90.45%, 97.36% and 87.24%, respectively, which may be attributed to the introduction of ß-CD with superior ability of both adsorption and in-situ lignin protection to efficiently remove lignin with intact structure from cellulose surface. The mechanisms of high-efficiency lignin extraction/protection were systematically illustrated by adsorption kinetics. Moreover, Trichosporon cutaneum grown on the hemicellulose and cellulose fractions after pretreatment afforded 8.8 g total lipids from 100 g wheat straw. The green SUPARDES pretreatment strategy offers a new avenue for upgrading lignocellulose to biofuels.

3.
Environ Pollut ; 337: 122605, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742863

RESUMO

Glufosinateammonium (GLA) is one of the most widely used agricultural herbicides. It is frequently detected in surface waters near farmland and may pose a risk to non-target aquatic species. This study aimed to explore the toxicity of subacute GLA exposure in crayfish. Adult red swamp crayfish were exposed to GLA (0, 1, 10, and 100 mg/L) for 21 days. Bioaccumulation, oxidative stress, nonspecific immunity, and the expression of genes encoding xenobiotic detoxification-related enzymes were examined. The results showed GLA accumulation and hepatopancreatic histopathological changes (dilation of hepatic tubules and vacuolation of hepatocytes) in the exposed crayfish. GLA exposure induced ROS production, inhibited glutathione expression, and catalase activity in the crayfish hepatopancreas, as well as inhibited immunoenzyme expression (acid phosphatase, alkaline phosphatase, and lysozyme) in the hemolymph. In addition, the total hemocyte number decreased, and the proportion of hemocyte subsets changed significantly. Superoxide dismutase first increased and then decreased with increasing GLA dosage. GLA promoted the expression of biotransformation enzymes (cypb5, gst) in the hepatopancreas. Our results suggest that subacute GLA exposure caused structural damage to the hepatopancreatic tissue and decreased antioxidant capacity and non-specific immunity in crayfish. These findings provide insight into the toxicity of herbicides on non-target organisms.


Assuntos
Herbicidas , Animais , Herbicidas/toxicidade , Herbicidas/metabolismo , Astacoidea/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo
4.
Microb Biotechnol ; 16(10): 1940-1956, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37410351

RESUMO

Whitmania pigra is widely used in traditional Chinese medicine. However, W. pigra is being threatened by an edema disease with unknown causes (WPE). In this study, a comprehensive exploration of virome, microbiome, and metabolome aberrations in the intestine of W. pigra was performed to address the aetiology of WPE. Virome analysis indicated that eukaryotic viruses did not contribute to WPE, whereas an expansion of Caudovirales was observed in WPE. Compared to the control, the microbial richness and diversity in diseased W. pigra decreased remarkably. Nine genera, including Aeromonas, Anaerotruncus, Vibrio, Proteocatella, Acinetobacter, and Brachyspira were overrepresented in WPE, whereas eleven genera, including Bifidobacterium, Phascolarctobacterium, Lactobacillus, Bacillus and AF12, were enriched in healthy individuals. Furthermore, certain metabolites, especially amino acids, short-chain fatty acids, and bile acids, were found to be linked to intestinal microbiota alterations in WPE. An integration of the microbiome and metabolome in WPE found that dysbiosis of the gut microbiota or metabolites caused WPE. Notably, W. pigra accepted intestinal microbiota transplantation from WPE donors developed WPE clinical signs eventually, and the dysbiotic intestinal microbiota can be recharacterized in this recipient W. pigra. Strikingly, pathological features of metanephridium and uraemic toxin enrichment in the gut indicated a putative interconnection between the gut and metanephridium in WPE, which represents the prototype of the gut-kidney axis in mammals. These finding exemplify the conservation of "microecological Koch's postulates" from annelids to insects and other vertebrates, which provides a direction of prevention and treatment for WPE and opens a new insight into the pathogenesis of aquatic animal diseases from an ecological perspective.


Assuntos
Disbiose , Sanguessugas , Animais , Humanos , Sanguessugas/química , Aminoácidos , Metaboloma , Edema , Mamíferos
5.
Microbiol Spectr ; 11(4): e0081023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37265414

RESUMO

The Yangtze finless porpoise (YFP) (Neophocaena asiaeorientalis asiaeorientalis) is a critically endangered freshwater cetacean, with about 1,249 individuals thought to be left in the wild. However, viral entities and viral diseases of YFPs remain obscure. In this study, anal swabs for virome analysis were collected during the physical examination of YFPs in the Tian-E-Zhou Oxbow (TEO) ex situ reserve. A total of 19 eukaryotic viral species belonging to 9 families, including Papillomaviridae, Herpesviridae, Picornaviridae, Picobirnaviridae, Caliciviridae, Retroviridae, Parvoviridae, Virgaviridae, and Narnaviridae, and other unclassified viruses were identified based on metasequencing. Among these detected viruses, a novel herpesvirus (NaHV), two different kobuviruses (NaKV1-2), and six different papillomaviruses (NaPV1 to -6) were considered potential risks to YFPs and confirmed by PCR or reverse transcription-PCR (RT-PCR). Most YFPs sampled were found to harbor one or more kinds of detected viral genomes (52/58 [89.7%]). Surveillance results demonstrated that kobuvirus and herpesvirus displayed obvious age distribution and PVs showed significant gender difference in YFPs. According to species demarcation criteria in individual genera in Papillomaviridae, two novel species (referred to as Omikronpapillomavirus 2 and 3) and four novel isolates of PV were identified in YFPs. Further evolutionary analysis suggested that NaPVs would occupy the mucosal niche and that virus-host codivergence mixed with duplications and host-switching events drives the evolution of cetacean PVs. Divergence times of PVs in YFP and other cetacean reflect the incipient speciation of YFPs. In summary, our findings revealed the potential viral entities, their prevalence, and their evolutionary history in YFPs, which raises an important issue regarding effects of viral infection on the fitness of YFPs. IMPORTANCE The Yangtze finless porpoise (YFP) is the only cetacean species in freshwater following the functional extinction of the baiji (Lipotes vexillifer). Health management, disease treatment, and other special measures are important for maintaining the existing YFP populations, especially in in situ and ex situ reserves. The discovery of potential viral entities and their prevalence in YFPs raises an important issue regarding the effects of viral infection on the fitness of YFPs and may contribute to the conservation of YFPs. The evolutionary history of papillomaviruses in YFP and other cetaceans reflects the phylogeny of their hosts and supports the status of incipient species, opening a window to investigate the evolutionary adaptation of cetaceans to freshwater as well as their phylogeny to remedy the deficiency of fossil evidence.


Assuntos
Toninhas , Animais , Água Doce , Células Eucarióticas
6.
Microbiol Spectr ; 11(4): e0514622, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37255471

RESUMO

The emergence or reemergence of viruses pose a substantial threat and challenge to the world population, livestock, and wildlife. However, the landscape of antiviral agents either for human or animal viral diseases is still underdeveloped. The far tougher actuality is the case that there are no approved antiviral drugs in the aquaculture industry, although there are diverse viral pathogens. In this study, using a novel epithelial cell line derived from the brain of Micropterus salmoides (MSBr), inflammation and oxidative stress were found to implicate the major pathophysiology of M. salmoides rhabdovirus (MSRV) through transcriptome analysis and biochemical tests. Elevated levels of proinflammatory cytokines (interleukin-1ß [IL-1ß], IL-6, IL-8, tumor necrosis factor alpha [TNF-α], and gamma interferon [IFN-γ]) and accumulated contents of reactive oxygen species (ROS) as well as biomarkers of oxidative damage (protein carbonyl and 8-OHdG) were observed after MSRV infection in the MSBr cells. Mangiferin or taurine dampened MSRV-induced inflammation and rescued the oxidative stress and, thus, inhibited the replication of MSRV in the MSBr cells with 50% effective concentration (EC50) values of 6.77 µg/mL and 8.02 µg/mL, respectively. Further, mangiferin or taurine hampered the activation of NF-κB1 and the NF-κB1 promoter as well as the increase of phosphorylated NF-κB (p65) protein level induced by MSRV infection, indicating their antiviral mechanism by suppressing NF-κB signaling. These findings exemplify a practice approach, aiming to dampen and redirect inflammatory responses, to develop broad-spectrum antivirals. IMPORTANCE Aquaculture now provides almost half of all fish for human food in 2021 and plays a significant role in eliminating hunger, promoting health, and reducing poverty. There are diverse viral pathogens that decrease production in aquaculture. We developed a novel epithelial cell line derived from the brain of Micropterus salmoides, which can be used for virus isolation, gene expressing, and drug screening. In this study, we focus on M. salmoides rhabdovirus (MSRV) and revealed its pathophysiology of inflammation and oxidative stress. Aiming to dampen and redirect inflammatory responses, mangiferin or taurine exhibited their antiviral capability by suppressing NF-κB signaling. Our findings exemplify a practice approach to develop broad-spectrum antivirals by dampening and redirecting inflammatory responses.


Assuntos
Bass , Rhabdoviridae , Animais , Humanos , NF-kappa B/metabolismo , Taurina/farmacologia , Rhabdoviridae/metabolismo , Inflamação/tratamento farmacológico , Bass/metabolismo , Antivirais/farmacologia
7.
Front Immunol ; 14: 1105156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814911

RESUMO

It is generally considered that stress causes decreased immune function and render fish vulnerable to infection and diseases. However, the molecular mechanisms between stress responses and susceptibility to infections, especially viral diseases, in fish remain unknown. Understanding and monitoring the biological consequences and mechanisms underlying stress responses in fish may contribute to the improvement of animal welfare and production efficiency. In this study, long-term exposure to a variety of stressors, including chasing, overcrowding, restraint stress, and air exposure mimicking chronic stresses, in aquaculture practices was conducted in Carassius gibel to investigate the consequences of chronic stress on inflammation and antiviral capability. With the continuation of stimulation, experimental fish gradually became insensitive to the stress of net chasing and feeding with the accompaniment of upregulated gene expressed in the HPI axis and elevated levels of stress hormones. As expected, stress-induced hyperglycaemia with a decrease in the insulin signaling pathway and altered gene expression in glycolysis and gluconeogenesis, suggesting the disturbance of glycometabolism. Importantly, a link between intestinal homoeostasis and systemic low-grade inflammation in stressed C. gibel was observed, implying crosstalk among the brain, intestine, and other organs. Furthermore, the compromised antiviral capability with impaired antiviral innate immunity in stressed fish was confirmed by RNA sequencing and infection with Cyprinid herpesvirus 2 (CyHV-2), promoting the understanding of enhanced susceptibility to viral infection in stressed fish.


Assuntos
Infecções por Herpesviridae , Animais , Carpa Dourada , Antivirais , Imunidade Inata/genética , Inflamação
8.
Environ Sci Pollut Res Int ; 30(15): 43914-43926, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680717

RESUMO

Cadmium (Cd), a non-biodegradable contaminant in freshwater ecosystems, can pose a serious threat to aquatic animals at high levels. In this study, the Cd toxicokinetics and the immune and antioxidant defense were explored in Procambarus clarkii exposed to different levels of Cd (0, 0.1, 1.0 mg Cd/L) or treated with 1.0 mg Cd/L and dietary Bacillus subtilis supplementation (1 × 107 cfu/g). Results from the 21-day uptake and depuration experiment revealed that Cd exposure elicited a dose- and time-dependent uptake in all crayfish tissues, and the rank order of Cd concentration was gill > hepatopancreas > exoskeleton > muscle. The one-compartment model demonstrated that gills had the highest uptake rate (ku) value after Cd aqueous exposure and the ku and elimination rate (kd) values in gill, hepatopancreas, and exoskeleton of the group with 1.0 mg Cd/L were higher than those of the group at alow Cd concentration (0.1 mg Cd/L). However, B. subtilis could decrease Cd ku and increase Cd kd in hepatopancreas, resulting in the reduction of bioconcentration factors (BCF), steady-state concentrations (Css), and biological half-life (Tb1/2). A positive correlation was found between aqueous Cd concentration and the severity of hepatopancreas histopathological injury, while B. subtilis could ameliorate the pathological damage in the high Cd group. Similarly, aqueous exposure to Cd elevated malonaldehyde (MDA) content and suppressed the activities of lysozyme (LZM), acid phosphatase (ACP) in hepatopancreas and alkaline phosphatase (AKP) in hemolymph. The activities of superoxide dismutase (SOD) and catalase (CAT) in hepatopancreas were also inhibited. Nevertheless, they were all recovered with the dietary addition of B. subtilis. In conclusion, our results indicated that exposure to Cd significantly increased Cd accumulation and toxic damages in crayfish hepatopancreas, while dietary administration of B. subtilis to crayfish significantly decreased Cd accumulation and improved the immune and antioxidant defense, leading to the prevention in toxic effects of Cd.


Assuntos
Antioxidantes , Astacoidea , Animais , Antioxidantes/metabolismo , Astacoidea/química , Cádmio/toxicidade , Bacillus subtilis/metabolismo , Ecossistema , Toxicocinética , Suplementos Nutricionais , Hepatopâncreas , Estresse Oxidativo
9.
Chem Asian J ; 17(18): e202200566, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35862657

RESUMO

Lignocellulose biomass (LCB) has extensive applications in many fields such as bioenergy, food, medicines, and raw materials for producing value-added products. One of the keys to efficient utilization of LCB is to obtain directly available oligo- and monomers (e. g., glucose). With the characteristics of easy recovery and separation, high efficiency, economy, and environmental protection, immobilized enzymes have been developed as heterogeneous catalysts to degrade LCB effectively. In this review, applications and mechanisms of LCB-degrading enzymes are discussed, and the nanomaterials and methods used to immobilize enzymes are also discussed. Finally, the research progress of lignocellulose biodegradation catalyzed by nano-enzymes was discussed.


Assuntos
Biocombustíveis , Nanoestruturas , Biomassa , Catálise , Hidrólise , Lignina
10.
Fish Shellfish Immunol ; 121: 254-264, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34990806

RESUMO

Antimicrobial peptides (AMPs) and their mimics are rapidly gaining attention as a new class of antimicrobials due to their clinical potential. AMPs are widely distributed throughout nature and participate in the innate host defense. In this study, 18 AMPs, including 3 ß-defensins, 3 hepcidins, 4 liver-expressed antimicrobial peptide 2 (LEAP-2) compounds, 4 g-type lysozymes, 2 c-type lysozymes, and 2 NK-lysins, were identified from the genome of Carassius auratus by a homologous search and were further classified based on their fundamental structural features and molecular phylogeny. C. auratus AMPs were found to be ubiquitously distributed in all tested tissues and showed similar expression profiles, with the exception of ß-defensins, when RT-qPCR was used to investigate the tissue distribution of AMPs in healthy Carassius gibel. In addition, the expression levels of NK-lysin genes in the tested tissues tended to be upregulated upon bacterial and viral infection when representative NK-lysins were chosen to examine their relative expression levels in various tissues. Importantly, the synthetic peptide caNKL2102-119, which targets the functional domain of saposin B in caNK-lysins, could effectively counter Aeromonas hydrophila, Staphylococcus aureus, and Escherichia coli with minimum inhibitory concentration (MIC) values of 3-6 µg/mL, as well as inhibit the proliferation of spring viraemia of carp virus (SVCV). These results provide potential targets for antibiotic-free breeding in the aquaculture industry.


Assuntos
Peptídeos Antimicrobianos , Doenças dos Peixes , Proteínas de Peixes , Carpa Dourada , beta-Defensinas , Animais , Anti-Infecciosos , Peptídeos Antimicrobianos/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Carpa Dourada/genética , Carpa Dourada/imunologia , beta-Defensinas/genética
11.
Bioresour Bioprocess ; 9(1): 124, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38647643

RESUMO

Environmental problems such as greenhouse effect, the consumption of fossil energy, and the increase of human demand for energy are becoming more and more serious, which force researcher to turn their attention to the reduction of CO2 and the development of renewable energy. Unsafety, easy to lead to secondary environmental pollution, cost inefficiency, and other problems limit the development of conventional CO2 capture technology. In recent years, many microorganisms have attracted much attention to capture CO2 and synthesize valuable products directly. Fatty acid derivatives (e.g., fatty acid esters, fatty alcohols, and aliphatic hydrocarbons), which can be used as a kind of environmentally friendly and renewable biofuels, are sustainable substitutes for fossil energy. In this review, conventional CO2 capture techniques pathways, microbial CO2 concentration mechanisms and fixation pathways were introduced. Then, the metabolic pathway and progress of direct production of fatty acid derivatives from CO2 in microbial cell factories were discussed. The synthetic biology means used to design engineering microorganisms and optimize their metabolic pathways were depicted, with final discussion on the potential of optoelectronic-microbial integrated capture and production systems.

12.
Front Microbiol ; 12: 696281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589066

RESUMO

This study aimed to determine the effect of the growth stage of Procambarus clarkii on their intestinal microbiota. Intestinal samples of five different growth stages of P. clarkii (first instar, second instar, third instar, juvenile, and adult) from laboratory culture were analyzed through the Illumina MiSeq high-throughput sequencing platform to determine the intestinal microbiome of crayfish. The alpha diversity decreased along with the growth of the crayfish, with the relative abundance of the microbiota changing among stages; crayfish at closer development stages had a more comparable intestinal microbiota composition. A comparative analysis by principal component analysis and principal coordinate analysis showed that there were significant differences in the intestinal microbiota of crayfish among the different growth stages, except for the first two stages of larval crayfish, and the intestinal microbiota showed a consistent progression pattern from the larval stage to the juvenile stage. Some microbiota showed stage specificity, which might be the characteristic microbiota of different stages of growth. According to FAPROTAX functional clustering analysis, the three stages of larvae were clustered together, while the juvenile and adult stages were clustered separately according to the growth stage, indicating that, in the early stages of larval development, the function of the intestinal flora was similar; as the body grew and developed, the composition and function of the intestinal microbiota also changed.

13.
Fish Shellfish Immunol ; 101: 216-224, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32224280

RESUMO

Spring viraemia of carp virus (SVCV) can cause a high mortality in common carp (Cyprinus carpio), and its main pathological processes include the inflammatory response. However, the detailed mechanism is still unclear. Reactive oxygen species (ROS) have been shown to play critical roles in the immune response, including inflammation, in different models. Our previous studies have demonstrated that SVCV infection results in the accumulation of ROS, including H2O2, in epithelioma papulosum cyprini (EPC) cells. In this study, we aimed to explore the relationship between H2O2 accumulation and inflammation during SVCV infection. After EPC cells were infected with SVCV, the expression levels of the inflammatory factors tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2, and interleukin (IL)-8 were up-regulated, while the expression of the anti-inflammatory factor interleukin (IL)-10 was down-regulated, compared with that in mock-infected EPC cells. The antioxidant N-acetyl-l-cysteine (NAC) could dampen the increased TNF-ɑ and COX-2 expression induced by SVCV and H2O2, suggesting a relationship between ROS accumulation and inflammation during SVCV infection. Dual luciferase reporter assays demonstrated that SVCV could not activate the NF-κB pathway. In addition, inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC) treatment had no effect on the expression of inflammatory factors. Furthermore, inhibition of the ERK, JNK, and p38MAPK signaling pathways by U0126, SP600125, and SB203580, respectively, reduced the expression of TNF-ɑ, COX-2, and IL-8, indicating that these three signaling pathways were all involved in the inflammatory response after SVCV infection. In addition, the PI3K signaling pathway was involved in the expression of the chemokine IL-8 in the SVCV-induced inflammatory response. We also showed that inhibition of the MAPK or PI3K signaling pathway facilitated the expression of SVCV-G as well as increased the SVCV viral titer. Altogether these results reveal the mechanism of the SVCV-mediated inflammatory response. Thus, targeting these signaling pathways may provide novel treatment strategies for SVCV-mediated diseases.


Assuntos
Carpas , Doenças dos Peixes/imunologia , Inflamação/veterinária , Espécies Reativas de Oxigênio/metabolismo , Infecções por Rhabdoviridae/veterinária , Transdução de Sinais , Animais , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Inflamação/imunologia , Inflamação/virologia , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia
14.
Microorganisms ; 8(3)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245260

RESUMO

Cyprinid herpesvirus 2 (CyHV-2, species Cyprinid herpesvirus 2) causes severe mortality in ornamental goldfish, crucian carp (Carassius auratus), and gibel carp (Carassius gibelio). It has been shown that the genomic DNA of CyHV-2 could be detected in subclinical fish, which implied that CyHV-2 could establish persistent infection. In this study, the latency of CyHV-2 was investigated in the survival fish after primary infection. CyHV-2 genomic DNA was detected in multiple tissues of acute infection samples; however, detection of CyHV-2 DNA was significantly reduced in fish recovered from the primary infection on day 300 postinfection. No active viral gene transcription, such as DNA polymerase and ORF99, was detected in recovered fish. Following temperature stress, an increase of CyHV-2 DNA copy numbers and gene transcription were observed in tissues examined, which suggests that CyHV-2 was reactivated under stress. In addition, a cell line (GCBLat1) derived from the brain tissue from CyHV-2-exposed fish harbored CyHV-2 genome but did not produce infectious virions under normal culture conditions. However, CyHV-2 replication and viral gene transcription occurred when GCBLat1 cells were treated with trichostatin A (TSA) or phorbol 12-myristate 13-acetate (TPA). It suggests CyHV-2 can remain latent in vitro and can reactivate under stress condition.

15.
Virus Res ; 259: 46-53, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385363

RESUMO

Herpesvirus infection was investigated in black bears (Ursus americanus) with neurological signs and brain lesions of nonsuppurative encephalitis of unknown cause. Visible cytopathic effects (CPE) could only be observed on days 3-5 post-infection in HrT-18G cell line inoculated with bear tissue extracts. The observed CPE in HrT-18G cells included syncytia, intranuclear inclusions, and cell detachments seen in herpesvirus infection in vitro. Herpesvirus-like particles were observed in viral culture supernatant under the electron microscope, however, capsids ranging from 60 nm to 100 nm in size were often observed in viral cultures within the first two passages of propagation. Herpesvirus infection in the bear tissues and tissue cultures were detected by PCR using degenerate primers specific to the DNA polymerase gene (DPOL) and glycoprotein B gene (gB). DNA sequencing of the amplicon revealed that the detected herpesvirus has 94-95% identity to Ursid gammaherpesvirus 1 (UrHV-1) DNA sequences of DPOL. Phylogenetic analysis of DPOL sequences indicates that black bear herpesviruses and UrHV-1 are closely related and have small distances to members of Rhadinovirus. Interestingly, black bear herpesvirus infections were also found in bears without neurological signs. The DPOL DNA sequence of black bear herpesviruses detected in neurological bears were similar to the those detected in the non-neurological bears. However, the gB DNA sequence detected from the neurological bear is different from non-neurological bear and has only 64.5%-70% identity to each other. It is possible that at least two different types of gammaherpesviruses are present in the U. americanus population or several gammaherpesviruses exist in ursine species.


Assuntos
Doenças dos Animais/virologia , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/veterinária , Ursidae/virologia , Doenças dos Animais/patologia , Animais , Linhagem Celular , Efeito Citopatogênico Viral , DNA Viral , Feminino , Gammaherpesvirinae/classificação , Gammaherpesvirinae/isolamento & purificação , Gammaherpesvirinae/ultraestrutura , Masculino , Filogenia , Análise de Sequência de DNA
16.
Dev Comp Immunol ; 87: 109-115, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29909090

RESUMO

Antimicrobial peptides (AMPs) play important roles in innate immunity against pathogens and lysozymes are a particularly type of AMP. Lysozymes are hydrolytic enzymes that are characterized by their ability to cleave the beta-(1,4)-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, which is the major bacterial cell wall polymer. In this work, a lysozyme was identified from Procambarus clarkii and designated PcLys-i3. Quantitative RT-PCR was used to analyze the tissue distribution and expression profiles of PcLys-i3. PcLys-i3 was present in all tested tissues and had high expression levels in gills, stomach and intestine. The expression levels of PcLys-i3 were up-regulated in gills and intestine after challenge with Vibrio parahaemolyticus, Staphylococcus aureus and Aeromonas hydrophila. PcLys-i3 and PcFer proteins can enhance the bacterial elimination in crayfish, whereas the bacterial elimination was weakened when the expression level of PcLys-i3 or PcFer RNAs was suppressed by RNAi. Recombinant PcLys-i3 and PcFer significantly reduced the mortality of crayfish with bacterial infections. Further study found that PcLys-i3 could interact with PcFer in vitro. Finally, the PcLys-i3 and PcFer proteins could bind to bacteria and inhibit bacterial replication. These results suggest that both PcLys-i3 and PcFer play important roles in the antibacterial immunity of red swamp crayfish.


Assuntos
Antibacterianos/imunologia , Proteínas de Artrópodes/imunologia , Astacoidea/imunologia , Muramidase/imunologia , Aeromonas hydrophila/imunologia , Aeromonas hydrophila/fisiologia , Animais , Antibacterianos/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Astacoidea/genética , Astacoidea/microbiologia , Perfilação da Expressão Gênica/métodos , Brânquias/imunologia , Brânquias/metabolismo , Brânquias/microbiologia , Interações Hospedeiro-Patógeno , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Muramidase/genética , Muramidase/metabolismo , Interferência de RNA , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Regulação para Cima , Vibrio/imunologia , Vibrio/fisiologia
17.
Fish Shellfish Immunol ; 79: 65-72, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29753142

RESUMO

Spring viremia of carp virus (SVCV) is the etiological agent of spring viremia of carp (SVC) and causes mass mortality in common carp (Cyprinus carpio). Currently, no effective treatments or commercial vaccines against SVCV are available. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the degradation of heme to produce carbon monoxide (CO), biliverdin and ferrous iron (Fe2+), exerts anti-oxidant, antiinflammatory and anti-apoptotic properties. Previous studies demonstrated that nuclear factor-erythroid 2 related factor 2 (Nrf2) functions as an important upstream regulator of HO-1 and exhibits robust activity against SVCV infection. In this study, we further examined the antiviral activity of HO-1 against SVCV infection. The elevated expression of HO-1 was induced upon cobalt protoporphyrin (CoPP) treatment in EPC cells without affecting cell viability and thus inhibited SVCV replication in a dose dependent manner. Knocking down of HO-1 rescued SVCV replication. Thereby, the antiviral activity of ROS/Nrf2/HO-1 axis was confirmed in EPC cells. Furthermore, HO-1 enzymatic products CO, but not biliverdin, markedly inhibited SVCV replication via the activation of cyclic GMP/protein kinase G signaling pathway. Collectively, these findings suggest potential drug or therapy that induced the Nrf2/HO-1/CO/cGMP/PKG signaling pathway as a promising strategy for treating SVC.


Assuntos
Monóxido de Carbono/metabolismo , Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Heme Oxigenase-1/genética , Animais , Biliverdina/farmacologia , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Proteínas de Peixes/metabolismo , Heme Oxigenase-1/metabolismo , Técnicas In Vitro , Compostos Organometálicos/farmacologia , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Transdução de Sinais/imunologia , Replicação Viral
18.
Fish Shellfish Immunol ; 75: 58-65, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29410243

RESUMO

Spring viraemia of carp virus (SVCV) is a deadly pathogen of common carp. SVCV infection is found to be associated with excess reactive oxygen species (ROS) generation and induces oxidative stress in EPC and FHM cells, which contributes to its pathogenesis. In this study, ROS production and mitochondria function as well as antioxidant enzymes in mitochondria were investigated during SVCV infection in EPC cells. Dysfunction of mitochondria and inactivation of mitochondria electron transport chain complex Ⅲ to augment O2-∙ and H2O2 accumulation were observed in SVCV infected EPC cells. Treatment of Antimycin A reduced the activity of mitochondria complex Ⅲ in EPC cells, which also inhibited the transcription of SVCV glycoprotein gene (SVCV-G) and production of SVCV. Our studies explain the production of ROS following SVCV infection and also suggest that integrate mitochondrial function is important for SVCV infection.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Peixes/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rhabdoviridae/fisiologia , Técnicas In Vitro
19.
Emerg Infect Dis ; 23(12): 2055-2059, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29148374

RESUMO

Multiregional outbreaks of meningitis-like disease caused by Elizabethkingia miricola were confirmed in black-spotted frog farms in China in 2016. Whole-genome sequencing revealed that this amphibian E. miricola strain is closely related to human clinical isolates. Our findings indicate that E. miricola can be epizootic and may pose a threat to humans.


Assuntos
DNA Bacteriano/genética , Surtos de Doenças , Infecções por Flavobacteriaceae/veterinária , Flavobacteriaceae/patogenicidade , Meningites Bacterianas/veterinária , Animais , China/epidemiologia , Fazendas , Flavobacteriaceae/classificação , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Infecções por Flavobacteriaceae/epidemiologia , Infecções por Flavobacteriaceae/mortalidade , Infecções por Flavobacteriaceae/transmissão , Meningites Bacterianas/epidemiologia , Meningites Bacterianas/mortalidade , Meningites Bacterianas/transmissão , Filogenia , Ranidae/microbiologia , Análise de Sequência de DNA , Análise de Sobrevida
20.
Fish Shellfish Immunol ; 58: 474-482, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27693327

RESUMO

Generation of reactive oxygen species (ROS) and failure to maintain an appropriate redox balance contribute to viral pathogenesis. Nuclear factor E2-related factor 2 (Nrf2) is an important transcription factor that plays a pivotal role in maintaining intracellular homoeostasis and coping with invasive pathogens by coordinately activating a series of cytoprotective genes. Previous studies indicated that the transcription and expression levels of Nrf2 were up-regulated in SVCV-infected EPC cells with the unknown mechanism(s). In this study, the interactions between the Nrf2-ARE signalling pathway and SVCV replication were investigated, which demonstrated that SVCV infection induced accumulation of ROS as well as protein carbonyl groups and 8-OHdG, accompanied by the up-regulation of Nrf2 and its downstream genes. At the same time, the activation of Nrf2 with D, l-sulforaphane (SFN) and CDDO-Me could repress the replication of SVCV, and knockdown of Nrf2 by siRNA could promote the replication of SVCV. Taken together, these observations indicate that the Nrf2-ARE signal pathway activates a passive defensive response upon SVCV infection. The conclusions presented here suggest that targeting the Nrf2 pathway has potential for combating SVCV infection.


Assuntos
Carpas , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Fator 2 Relacionado a NF-E2/genética , Infecções por Rhabdoviridae/veterinária , Rhabdoviridae/fisiologia , Regulação para Cima , Animais , Linhagem Celular Tumoral , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...